研报简读《钒液流电池兼具安全与灵活的长时储能技术未来前景可期(一)》

券商机构:国信证券

证券分析师:王蔚祺、陈抒扬

一、钒电池基本结构与特性


全钒液流电池(简称钒电池)是以钒为活性物质呈循环流动液态的电池。钒电池工作原理为使用外接泵把电解液压入电堆体内,在机械动力作用下电解液在不同的储液罐和半电池的闭合回路中循环流动、流过电极表面并发生电化学反应,随后双电极板收集和传导电流,从而使得储存在溶液中的化学能转换成电能。
钒电池最早由A.Pellegri等人于1978年提出,1988年开启工程化发展,目前日本、中国、澳大利亚、加拿大、美国等处于全球技术第一梯队。当前下游需求未打开,钒电池装机规模较小,截至2022年底全球液流电池(以钒液流电池为主)累计装机规模为274.2MW,在全球新型储能中占比0.6%。其中中国液流电池累计装机为157.2MW,在国内新型储能中占比1.2%

钒电池系统主要由功率单元、能量单元、电解液输送系统、电池管理系统、储能逆变器等组成,其中功率单元和能量单元是核心构件。功率单元-电堆主要由离子膜、电极、密封垫、电极框、双极板等构成。电堆是系统的重要部件,是发生电化学反应的主要场所,其数量和大小影响了钒电池功率。能量单元-电解液是不同价态的钒离子水溶液(正极为+4/+5价,负极为+2/+3价),其分别存储在正负极储液罐中。电解液的体积和浓度决定了钒电池的储能容量。 

钒电池中电解液与电堆的成本占比较高。电解液一次成本占总成本的35%,其中五氧化二钒占电解液成本60%左右(V2O513万元/吨计算)。电堆成本占总成本的35%,而电堆成本中55%来自于离子传导膜。其他装置(如管路与控制系统、循环泵等)占总成本的30%

 二、钒电池高安全、长寿命、灵活性高,是长时储能的有效方式

钒电池安全稳定,契合储能电站对安全性的高要求。据CNESA不完全统计,2022年全球共发生了18起储能安全事故,百兆瓦级的事故项目数明显多于往年。2022年,国家能源局在《防止电力生产事故的二十五项重点要求(2022年版)(征求意见稿)》中提出中大型电化学储能电站禁用三元锂电池和钠硫电池,对储能电站安全性进行更高要求。锂离子电池内部短路、热失控进而导致有机电解液分解、气化、燃烧,是锂电电站起火爆炸的主要原因。而钒电池的电解液是水溶液,具有本征安全性;同时循环流动的工作方式还能帮助电池系统快速散热,安全性高。

长时储能一般是指可以持续充放电4小时以上的储能技术,包括抽水蓄能、压缩空气储能、重力储能、液流电池储能等。长时储能侧重于解决峰谷时期供需匹配等经济性问题,能够提升新能源消纳能力。与抽水蓄能、压缩空气储能等长时储能技术相比,钒电池不受地理和地质条件约束、选址灵活,且项目建设周期短、对环境影响较小,在长时储能领域前景广阔。

钒电池功率与容量单元相互独立,成本能够伴随储能时长而有效摊销,与长时储能具有较高契合度。钒电池输出功率由电堆决定,储能容量由电解液决定,两者互相独立;功率可以通过增加电堆数量来提升、容量可以通过提升电解液浓度与体积来实现。同时,在功率不变的情况下,增加储能时长能够摊销功率单元成本,从而使得单Wh明显下降。

不同储能时长下全钒液流电池储能系统价格(元/Wh

 当前钒电池商业化应用面临一些障碍:

(1)电池合适的工作温区在5-40℃,相对较窄
(2)能量密度低,体积较大
(3)初始投资额高,根据融科储能数据,钒电池系统初始投资成本在2.1-7.5/Wh,显著高于磷酸铁锂电池(1.0-1.5/Wh

未来伴随优化电解液配方、改进电堆材料等方式出现,钒电池电化学性能有望进一步优化;同时伴随储能时长的增加和规模效应的增益,钒电池的经济性有望改善。

三、2026年液流电池新增装机量有望达到19.6GWh

随着全球能源转型,可再生能源的渗透率提升带动新型储能的发展,特别是可再生能源大基地的建设带动长时储能的应用,我们预计2023年全球液流电池行业进入规模化发展的元年,2023年全球新增装机有望达到1.7GWh2026年全球液流电池新增装机量有望达到19.6GWh2023-2026年均复合增速达到125%

四、部分国内企业钒电池电堆布局情况

                            

 原文发表在首善控股公众号】


【    end    】


创建时间:2024-04-07 09:54
浏览量:0
首页    研究报告    研报简读《钒液流电池兼具安全与灵活的长时储能技术未来前景可期(一)》